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The Acoustic Energy Flow Boundary Element Method (AEFBEM) is developed to predict

the acoustic energy density and intensity of an engineering system. Up to now, the

acoustic energy flow model has been used only for analysis of high frequencies or

radiation noise because of plane wave and far-field assumptions. In this research, a new

and spherical wave characteristics is derived successfully to predict the acoustic energy

density and intensity of a system in the medium-to-high frequency range. A near field

term of acoustic energy in spherical coordinate is added to the relationship between

energy density and energy flow. But with the far-field assumption, this term vanishes,

so the relationship between energy density and energy flow becomes the same as that

of the plane wave. By considering the near field energy term without far-field

assumption, the energy density at medium frequencies can be estimated. However, the

governing equation has to be numerically manipulated for use in the analysis of

complex structures; therefore, the Boundary Element Method (BEM) is implemented.

AEFBEM is a numerical analysis method formulated by applying the boundary element

method to an acoustic energy flow governing equation. It is very powerful in predicting

the acoustic energy density and intensity of complex structures in medium-to-high

frequency ranges, and can analyze interior noise and radiating sound. To verify its

validity, several numerical results are provided. BEM and AEFBEM were compared with

respect to energy density, and the results from both methods were similar.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Engineers in industries such as automotive, shipbuilding and aerospace have tried to improve the vibro-acoustic
comfort and reduce the noise and vibration of structures. Because of much interest in the problems of noise and vibration,
the need for their exact prediction is increasing. For engineers, computational analysis is the most popular method used to
predict the noise level of structures during the design process because it saves experimental costs and can be used to
analyze large or dangerous structures. In addition, the designs of structures can be conveniently changed and re-analyzed
by computer simulation. Therefore, the ability of an analysis method to calculate the noise level of a mechanical system
and its spectral distribution at a certain receiver point is very powerful and important in mechanical design practice.
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Noise prediction of complex structures can be carried out in three ranges of low, medium and high frequencies. The
noise level of a mechanical system is analyzed in many ways. Generally at low frequencies, the conventional Finite Element
Method (FEM) and Boundary Element Method (BEM) are widely used as analytical noise and vibration simulation tools.
However, these methods have critical disadvantages in medium-to-high frequency ranges since unreasonably fine mesh
size or higher order shape functions are required as the frequency increases. For a boundary element analysis, at least
six elements should be included in one wavelength to represent waves similar to sine wave. Analogous to BEM, the
FE-element has to be made very small at high frequencies because the shape function is frequency-independent. Such an
excessive number of elements induces longer operation time and high cost as well as considerable numerical errors due to
so many repeated computations. For this reason, FEM and BEM are considered inadequate methods to use in medium-to-
high frequency ranges, especially for a large engineering system. Researchers have tried to develop a new method which
can analyze noise and vibration of a system in medium-to-high frequency ranges without increase of numerical costs.
Statistical Energy Analysis (SEA), which provides a single averaged energy density with respect to time and space in a
subsystem, in contrast to the traditional methods like FEM and BEM that deal with physical quantities at a particular
instant and coordinates, has been developed for analysis at high frequencies by Lyon and Dejong [1]. Energy methods like
the SEA are not bound to any constraints of the number of elements in medium-to-high frequency ranges. Because of
modeling convenience and the advantage of reduced computational time, SEA has been used in various industrial fields for
the analysis of noise and vibration of a complex system at high frequencies. However, SEA cannot provide any information
about phase and energy flow in the domain of interest because it is based on the restrictive assumption of diffuse
vibrational fields. Besides, SEA is a method for high frequency analysis not for medium frequency analysis.

To overcome these weaknesses of the FEM, BEM and SEA for analysis in the medium-to-high frequency ranges, an
alternative method has been developed for analysis in the medium-to-high frequency ranges. Energy Flow Analysis (EFA),
which is based on an energy equation analogous to the steady-state heat conduction equation, is representative alternative
method. EFA, which was first introduced by Belov et al. [2], can be applied to numerical manipulations such as the finite
element method and boundary element method, and can be used to obtain information about the spatial distribution of
acoustic or vibrational energy densities and energy flows of subsystems in medium-to-high frequency ranges. Nefske and
Sung [3] applied a vibrational energy governing equation to the FEM to predict the vibrational response of an Euler–
Bernoulli beam, and Wohlever and Bernhard [4] studied additionally about rods and the Euler–Bernoulli beam. Bouthier
and Bernhard [5,6] expanded the studies of Wohlever to analyze a membrane, Kirchhoff plate and acoustic cavity. Smith
[7] suggested a hybrid method for predicting vibrational response of point loaded plate which could calculate direct field
and reverberant field, respectively. Le Bot [8] developed a vibro-acoustic model for analysis of multidimensional systems
like plates or acoustic cavities. Park et al. [9] studied the energy flow models of the in-planes waves in isotropic thin plates
and the flexural waves in orthotropic thin plates. And an energy flow model of reinforced beam–plate coupled structures
was suggested by Seo et al. [10], who developed the software PFADS based on the Energy Flow Finite Element Method
(EFFEM). Recently, Park and Hong [11,12] newly derived the energy governing equations of the Timoshenko beam and the
Mindlin plate. On the other hand, Lee et al. [13] applied an EFA energy governing equation to the boundary element
technique. The Energy Flow Boundary Element Method (EFBEM) is efficient way to analyze noise such as radiation or
scattering because BEM offers advantages in the analysis of acoustic fields over FEM.

But the method suggested by Lee et al. has some disadvantages in the analysis of radiation sound or interior noise for
low-to-medium frequency ranges because it uses an energy governing equation derived based on the assumption that
acoustic waves are plane waves in diffused field. Therefore, it is more effective for analyzing interior noise in the high-
frequency range. Thus Kwon [14] researched a new acoustic energy governing equation by considering spherical wave
characteristics and by assuming the far-field condition, and implemented an indirect boundary element method to the
governing equation. And Wang et al. also suggest Energy Boundary Element Analysis (EBEA) formulation to calculate sound
radiation at high frequency from a radiator [15]. Up to now, it has been used mainly for analysis of radiation noise, which
makes the far-field assumption be reasonable.

In this paper, the acoustic energy governing equation of Kwon et al. is expanded by including a near field energy term.
The derived energy governing equation without assumptions of diffused field and with weak far-field condition is very
useful for predicting noise level not only at high frequencies but at medium frequencies. The indirect boundary element
method is implemented on the new acoustic energy flow model for the prediction of the energy density of complex
Table 1
values of (2k2r2+1)/2k2r2.

200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 700 Hz 800 Hz 900 Hz 1000 Hz

0.5 m 1.1490 1.0662 1.0372 1.0238 1.0165 1.0121 1.0093 1.0073 1.0059

1 m 1.0372 1.0165 1.0093 1.0059 1.0041 1.0030 1.0023 1.0018 1.0014

2 m 1.0093 1.0041 1.0023 1.0014 1.0010 1.0007 1.0005 1.0004 1.0003

3 m 1.0041 1.0018 1.0010 1.0006 1.0004 1.0003 1.0002 1.0002 1.0001

4 m 1.0023 1.0010 1.0005 1.0003 1.0002 1.0001 1.0001 1.0001 1.0000

5 m 1.0019 1.0006 1.0003 1.0002 1.0001 1.0001 1.0000 1.0000 1.0000
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engineering systems. Finally, to validate the developed acoustic energy governing equation, the results of the developed
acoustic energy flow model and conventional BEM are compared for several frequencies.

2. Energy governing equation

When a mechanical system or fluid medium is steady state, incoming energy flow into a subsystem is equal to the sum
of internal energy dissipation and outflow of energy through its boundary. This energy conservation concept is derived
from the general control volume approach. The energy balancing equation derived by Bouthier and Bernhard [16] is as
follows:

rUIþPdiss ¼Pin, (1)

where Pdiss is the dissipated power due to the internal damping of the subsystem and Pin is external input power to the
subsystem. I is the intensity vector which is coming or leaving through the boundaries. For a system which has an internal
damping loss factor, the dissipated power is proportional to the time averaged energy and can be expressed as

Pdiss ¼ Zo/eS, (2)

where /S means a time-averaged value and o is the excitation angular frequency and Z is the damping loss factor [17].
Therefore Eq. (1) can be re-written as

rUIþZo eh i ¼Pin: (3)

In an acoustic problem, intensity can be expressed in terms of time-averaged energy. The acoustic wave equation is
transformed to a Helmholtz equation below with the assumption that it has a harmonic solution:

r
2pþ ~k

2
p¼ 0, (4)

where p is the acoustic pressure and ~k means the complex acoustic wavenumber k(1� jZ/2), which includes the damping
loss factor Z [18]. The general solution in spherical coordinate of the Helmholtz equation for free space or unbounded
medium is

pðrÞ ¼
A

r
expð�jkrÞ: (5)

And Eq. (5) is the pressure at distance r from the center of the simple source [19]. The pressure amplitude is
proportional to 1/r from the source. Using Euler equation, which defines the relation between the acoustic pressure and the
acoustic particle velocity, the acoustic particle velocity can be expressed as below [19]:

uðrÞ ¼
j

ro
@pðrÞ

@r
¼�j

A

or
1þ jkr

r2
expð�jkrÞ: (6)

The particle velocity is radial, and it is in-phase with the pressure at distance r, which is much larger than the
wavelength, and it is out of phase near the source. Since the average values of energy density and intensity are more
interesting than instantaneous values, the energy density and intensity are time-averaged by averaging over a period [20].
Fig. 1. Three dimensional acoustic cavity model.



Fig. 2. Centerline of field points (the points of which X=Y).

Fig. 3. The cubic acoustic cavity, Lx� Ly� Lz=4 m�4 m�4 m: (a) BE-model of 21,600 elements and (b) AEFBE-model of 600 elements.

J.-D. Kim et al. / Journal of Sound and Vibration 330 (2011) 271–286274



J.-D. Kim et al. / Journal of Sound and Vibration 330 (2011) 271–286 275
From Eqs. (5) and (6), the time averaged acoustic energy and intensity can be obtained as

eðrÞ ¼
1

4
ruru

�
r þ

1

rcg
2

pp�
� �

¼
A
�� ��2

2rcg
2r2

e�Zkr 1þ
1

2ðkrÞ2
þ

Z
2kr
þ
Z2

8

" #
, (7)

and

IrðrÞ ¼
1

2
Re pu�r
� �

¼
9A92

2rcgr2
e�Zkr r
!

, (8)

where n means the conjugate of a complex number, r is the density of an acoustic medium, cg is the group velocity and r
!

indicate direction vector, the subscript r in intensity and particle velocity vector denotes direction vector component of
intensity and particle velocity, respectively [19]. If the damping loss factor of the acoustic medium is very low (Z51), the
last two terms in Eq. (7) can be vanished and the equation can be simplified as follows:

eðrÞ ¼
9A92

2rc2
g r2

e�Zkr 1þ
1

2ðkrÞ2

" #
: (9)

When distance r from the source is larger than the wavelength, the relationship between energy and intensity
becomes a simple one, like the one of a plane wave (i.e. Ir=cge). The sound field in this region is called the far field. In the
near field, in region r5l, the velocity has a large value additionally, which is out of phase with the pressure. And it
produces additional energy term, as shown in Eq. (9), that contains the near field term 1

2 krð Þ2. Considering the effect of the
near field term, the relationship between the acoustic energy and intensity also include the near field term and it can be
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Fig. 4. The energy density level distribution of acoustic cavity when f=63 Hz. The reference energy density is 10�12 J/m3 and Z=0.0001: (a) BEM and

(b) AEFBEM.
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expressed as

Ir ¼ cg
2k2r2

2k2r2þ1

� �
/eS r
!
: (10)

Eq. (10) is called the energy transmission relationship between the acoustic energy density and intensity. As mentioned
above, without near-field consideration, the energy transmission relationship is the same as that of a plane wave, so the
energy governing equation using that relationship cannot express spherical wave characteristics well. Therefore, Eq. (10) is
important for formulating the energy governing equation of a spherical wave. To formulate the energy governing equation
of an acoustic space, the energy balance equation of Eq. (1) and the energy loss equation of Eq. (2) may be used. By
substitution of Eqs. (2) and (10) into Eq. (1), the energy governing equation representing the properties of a spherical wave
can be obtained as

cgrU
2k2r2

2k2r2þ1

� �
/eS

� �
þZo/eS¼Pin: (11)

Eq. (11) can be expressed in spherical coordinates and rearranged as below:

cg

r2

@

@r

2k2r2

2k2r2þ1

� �
/r2eSþ

Zo
cg

/r2eS
� �� �

¼Pin, (12)

cg

r2

2k2r2

2k2r2þ1

� �
@

@r
/r2eSþ

Zo
cg
þ

4k2r

2k2r2þ1
�

8k4r3

ð2k2r2þ1Þ2

 !
/r2eS

( )
¼ dðrÞ, (13)
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Fig. 5. The energy density level distribution of acoustic cavity when f=125 Hz. The reference energy density is 10�12 J/m3 and Z=0.0001: (a) BEM and

(b) AEFBEM.
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where d(r) is the Dirac-delta function. At the non-singular region, Eq. (13) can be simplified as

@

@r
/r2eSþ

Zo
cg
þ

4k2r

ð2k2r2þ1Þ2

 !
2k2r2þ1

2k2r2

� �
/r2eS¼ 0: (14)

Assuming the medium-to-high frequency range condition k2r2
b1, (2k2r2+1)/(2k2r2)E1 can be reasonable. As shown in

Table 1, the values of (2k2r2+1)/(2k2r2) are nearly unity at the mid-frequencies; therefore, (2k2r2+1)/(2k2r2) can be
neglected in multiplication. If the distance r is large enough, that approximation satisfies even in the low frequency range
and it can be thought weaker condition than far-field or high-frequency assumption krb1. However, 4k2r/(2k2r2+1)2 is not
vanished, although it is very small, because the damping loss factor Z is so small that 4k2r/(2k2r2+1)2 is not negligible
compared with Zo/cg. Finally, the acoustic energy governing equation is as below:

@

@r
/r2eSþ

Zo
cg
þ

4k2r

ð2k2r2þ1Þ2

 !
/r2eS¼ dðrÞ: (15)

4k2r/(2k2r2+1)2 is the term which is newly obtained by considering the additional near field energy, and it belongs to
the damping part of the differential equation.

3. AEFBEM

3.1. Green’s function

Eq. (15) is the differential equation in the form

@

@r
/r2eSþqðrÞ/r2eS¼ 0, (16)
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Fig. 6. The energy density level distribution of acoustic cavity when f=250 Hz. The reference energy density is 10�12 J/m3 and Z=0.0001: (a) BEM and

(b) AEFBEM.
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qðrÞ ¼
Zo
cg
þ

4k2r

ð2k2r2þ1Þ2
: (17)

This kind of differential equation has a formal solution as below:

/r2eS¼ Ce�
R

qðrÞdr : (18)

Therefore, the energy density equation and intensity equation, which satisfy Eq. (15), can be obtained as follows:

/eS¼
C

r2
e�ðZo=cg Þrþð1=ð1þ2k2r2ÞÞ, (19)

/IrS¼ cg
C

r2
e�ðZo=cg Þrþð1=ð1þ2k2r2ÞÞ r

!
: (20)

To evaluate the constant C, the relationship between intensity and input power can be applied. The input power is
defined as integral of intensity over a vanishingly small volume surrounding the origin of the source. This can be
expressed as

Pin ¼ lim
r-0

Z
S

IrðrÞdS¼ lim
r-0

4pr2IrðrÞ, (21)

where S indicates the boundary of the source.
From Eq. (21), the constant C is e�1/(4pcg) when the amplitude of the input power Pin is unity. Therefore, free-field

Green’s function G(r) for acoustic energy is

GðrÞ ¼
1

4pcgr2
e�Zkr�ð2k2r2=ð1þ2k2r2ÞÞ, (22)
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Fig. 7. The energy density level distribution of acoustic cavity when f=500 Hz. The reference energy density is 10�12 J/m3 and Z=0.0001: (a) BEM and

(b) AEFBEM.
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and free field Green’s function H(r) for intensity is

HrðrÞ ¼
1

4pr2
e�Zkr�ð2k2r2=ð1þ2k2r2ÞÞ: (23)

Here �2k2r2/(1+2k2r2) is additional term compared with conventional EFBEM Green’s function 1/4pr2 exp(�Zkr).
These Green’s functions will be used in the development of the indirect energy flow boundary element method.

3.2. Indirect AEFBEM

An indirect approach of the acoustic energy flow boundary element method (AEFBEM) will be formulated for noise
analysis. The basic concept of the indirect boundary element method is that a real system is embedded in an infinite

acoustic field and the fictitious source fð n
!
Þ is distributed on the boundary of the real system. In indirect AEFBEM, another

assumption is additionally applied; a propagating wave does not interfere with the propagation of the other waves.
Namely, the acoustic energy quantity at a point is merely the summation of the energy quantities of each propagating
field, and there is no cancelation of energy (linear superposition). Therefore, the energy density and intensity can be
represented as

eð x
!
Þ¼

Z
S

Gð9 x
!
� n
!

9Þfð n
!
ÞdSð n
!
Þþ

Z
V

Gð9 x
!
� z
!9ÞPinð z

!
ÞdVð z
!
Þ, (24)

and

Ið x
!
Þ¼

Z
S

Hð9 x
!
� n
!

9Þfð n
!
ÞdSð n
!
Þþ

Z
V

Hð9 x
!
� z
!9ÞPinð z

!
ÞdVð z
!
Þ, (25)
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Fig. 8. The energy density level distribution of acoustic cavity when f=650 Hz. The reference energy density is 10�12 J/m3 and Z=0.0001: (a) BEM and

(b) AEFBEM.
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where free-field Green’s functions for energy and intensity are Eqs. (22) and (23), respectively. V means the domain and S

denotes the boundary. x
!

is a field point in the domain, n
!

is the location of the fictitious source on the boundary, z
!

is the

position of the input power, and fð n
!
Þ is the strength of fictitious source on the boundary [21]. Using Eqs. (24) and (25),

the acoustic energy density and intensity can be calculated at the frequencies of interest. For computational analysis, the
domain and boundary in Eqs. (24) and (25) should be discretized. With the discretization, Eqs. (24) and (25) are restated as

eð x
!i
Þ ¼

XN

j ¼ 1

fð n
!j

Þ

Z
DS

Gð x
!i

, n
!j

ÞdSjþ
XM
k ¼ 1

Pinð z
!k
Þ

Z
DV

Gð x
!i

, z
!k
ÞdVk, (26)

and

Ið x
!i
Þ ¼

XN

j ¼ 1

fð n
!j

Þ

Z
DS

Hð x
!i

, n
!j

ÞdSjþ
XM
k ¼ 1

Pinð z
!k
Þ

Z
DV

Hð x
!i

, z
!k
ÞdVk: (27)

Here, the boundary S and domain V are discretized into N boundary elements and M internal cells, respectively.
The fictitious source strengths are determined by specifying one of three boundary conditions at all boundary elements.

The first boundary condition is energy density. By transforming Eq. (26) into a matrix index, the energy density at point i is
re-written as

ei ¼ GijjjþGikPin,k (28)

Eq. (28) means the energy density superposition of the field produced by discrete fictitious sources fj on the boundary
and the field created by discrete real point sources of strengths Pin,k. Gij and Gik are row vectors of Green’s functions
relating the fictitious source strengths located at point j and the real source strengths located at point k to the energy
density at point i on the boundary. fj and Pin,k are column vectors of fictitious sources and real sources, respectively. The
intensity boundary condition at point i of Eq. (27) can be restated as a matrix index by the superposition of the normal
intensity. The normal intensity is due to the fields created by the fictitious sources fj on the boundary and the real sources
of strengths Pin,k as

In,i ¼ IiUni ¼ Hij rijUni

� �	 

fjþ Hik rikUnið Þ½ �Pin,k (29)

where Hij and Hik are row vectors of intensity Green’s functions relating the fictitious and the real sources to the intensity
boundary condition. The third condition is the absorption boundary condition,

In,i ¼ IiUni ¼
1

4
cgaiei (30)

where ai is the Sabine absorption coefficient and ni is the normal vector at point i on the discrete boundary.
The set of linear matrix equation from the relationships of Eqs. (28), (29), and (30) is constructed to solve the fictitious

source strength fj. Applying one of these three prescribed boundary conditions at each boundary element will yield a set of
equations which can be written in matrix form as

KU¼ F, (31)
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where rows of K can either be equal to Gij, Hij(rijUni), or Hij rijUni

� �
�1

4cgaiei, and the forcing matrix F can either be

equal to ei�GijPin,k, In,i�Hi,kðrikUniÞPin,k, or 1
4cgaiGik�Hi,kðrikUniÞ
� �

Pin,k. When the fictitious source strengths are calculated,

the relationships Eq. (28) or Eq. (29) are used to get the energy density or intensity at field points in the acoustic domain.
The point source input used in this paper can be obtained after some manipulations by using relationship between

acoustic pressure and acoustic power [18]. The pressure field generated in free field by the uniform, radial, harmonic
pulsation of a sphere of equilibrium radius a at frequency o can be expressed as

pðr,tÞ ¼
1

1þ jka

jor0
~Q

4pr
exp jðot�kðr�aÞÞ

	 

(32)

where k is acoustic wavenumber, a is radius of the pulsating sphere and ~Q is the complex amplitude of volume velocity of
the source. In the case of point source, or ka51 the pressure field equation can be restated as

pðr,tÞ ¼
jor0

~Q

4pr
exp jðot�krÞ

	 

: (33)
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Fig. 10. The comparison of the energy density distribution along the centerline of field points when f=125 Hz. The reference energy density is 10�12 J/m3

and Z=0.0001: , AEFBEM; , BEM.
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Fig. 11. The comparison of the energy density distribution along the centerline of field points when f=250 Hz. The reference energy density is 10�12 J/m3
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Using Euler equation of Eq. (6) the time averaged intensity and acoustic power can be derived as

I¼
1

2
Re pu�r
� �

¼
r0o2 ~Q

2

32p2cr2
, (34)

P¼ 4pr2I¼
r0o2 ~Q

2

8pc
: (35)

Therefore, the source strength which would be applied to AEFBEM formulations can be calculated by using the volume
velocity of the source and the above relationship between the volume velocity and the acoustic power of the source makes
it possible to compare the results of BEM and AEFBEM with the same amplitude of the point source.
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Fig. 12. The comparison of the energy density distribution along the centerline of field points when f=500 Hz. The reference energy density is 10�12 J/m3

and Z=0.0001: , AEFBEM; , BEM.
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Fig. 13. The comparison of the energy density distribution along the centerline of field points when f=650 Hz. The reference energy density is 10�12 J/m3
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4. Numerical application of AEFBEM

4.1. Numerical verification

To verify the derived energy flow model for acoustic problems, numerical analysis was performed for a cubic room.
The analysis model is a cube, as shown in Fig. 1, where the dimension of the cube is Lx� Ly� Lz=4 m�4 m�4 m, and the
fluid properties are the same as those of air (r=1.21 kg/m3, cg=343 m/s). The point source is located at the center of the
room (2 m, 2 m, 2 m), the boundary is assumed to be a rigid wall and the intensity boundary condition is used. Field points,
which are the points of interest, are defined on the XY plane where z=2 m. The energy density distribution along the
centerline between BEM and AEFBEM is compared and AD is the centerline in Fig. 2. When the energy density is calculated
by using AEFBEM, Eqs. (26) and (27) are used. In the case of the BEM analysis, the indirect approach is used as AEFBEM.
Once the pressure and velocity values of the field points are obtained, then the energy density can be calculated by Eq. (7).
Therefore, the energy density calculated by using the results of BEM and the energy density of AEFBEM can be compared.
Figs. 4–8 show the spatial distribution of the energy density obtained by each solution for the frequencies of 63, 125, 250,
500, 650 Hz and (a) of each figure corresponds to the BEM result and (b) to the AEFBEM result. The comparison of the
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Fig. 14. The comparison of the energy density distribution along the centerline of field points when f=63 Hz. The reference energy density is 10�12 J/m3

and Z=0.0001: , BEM; , AEFBEM; , conventional EFBEM.
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energy density along the centerline is shown in Figs. 9–13, where solid line represents the conventional BEM result and the
dotted line indicates the result of AEFBEM. In Figs. 4–8, the developed EFA model considering the near field term represents
well the global variation of the boundary element method. These results can be clearly observed in Figs. 9–13. In the results
of both analysis methods, as the frequency increases, the spatial distributions of the energy densities predicted by the BEM
and AEFBEM solutions become more similar and it can be said that AEFBEM gives a good averaged energy density of the
acoustic field. The reason is that the acoustic energy flow model is made under the assumption of medium-to-high
frequency range condition k2r2

b1, according to this assumption, if the acoustic cavity is large enough, the energy flow
model developed in this paper can be applied even at low frequencies, of course except at very low frequencies, at which
the modes are very important. To discuss the validity of this developed method more clearly, comparisons among the BEM,
conventional EFBEM and developed AEFBEM are presented in Figs. 14–18.

Conventional energy flow models have given better results in the high frequency range, in which reverberant field can
be formed or spherical waves act like plane waves. In general room acoustics the frequency range for large room condition
is proposed as Eq. (36) [18] where V is volume of the room and T is the reverberation time in seconds

f 42000

ffiffiffiffi
T

V

r
(36)
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Fig. 16. The comparison of the energy density distribution along the centerline of field points when f=250 Hz. The reference energy density is 10�12 J/m3

and Z=0.0001: , BEM; , AEFBEM; , conventional EFBEM.
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Fig. 17. The comparison of the energy density distribution along the centerline of field points when f=500 Hz. The reference energy density is 10�12 J/m3

and Z=0.0001: , BEM; , AEFBEM; , conventional EFBEM.
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Fig. 18. The comparison of the energy density distribution along the centerline of field points when f=650 Hz. The reference energy density is 10�12 J/m3
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The energy flow boundary element model of Lee et al. [13] is used when the pressure field is a perfectly reverberant
field. The other model which was developed by Kwon [14] is used in the far-field case, which deals with the underwater
radiation noise problem in the sea. Therefore, these models are not adequate for interior noise problems at mid-high
frequencies. This work provides an alternative method for the conventional energy flow model for noise analysis.

The boundary element model (BE-model) and acoustic energy flow boundary element model (AEFBE-model) used in
this analysis are shown in Fig. 3(a) and (b), respectively. The BE-model has 21,600 elements and 21,602 nodes. As
mentioned, the elements of BE-model are fine and frequency-dependent, but those of the AEFBE-model are frequency-
independent. As shown in Fig. 3(b), the AEFBE-model is very sparse compared with the BE-model. It has only 600 elements
and 602 nodes. Although the BE-model has much more elements than the AEFBE-model, it can be used only up to 850 Hz
due to the rule of 6 elements per wavelength. On the other hand, the AEFBE-model shows sufficient convergence with only
hundreds of elements. Using BEM scheme, in matrix equation Ax=B matrix A is a full matrix(not a band matrix or sparse
matrix). We can use Gauss–Jordan elimination to compare computational time between BEM and AEFBEM. The difference
of computational time basically comes from the number of elements between two methods. Generally Gauss–Jordan
elimination as an algorithm has a time complexity of O(n3). The BE-model used in this paper has 21,600 elements and
21,602 nodes while APFBE-model has only 600 elements and 602 nodes, or BEM needs about 36 times more elements than
AEFBEM to calculate 4 m�4 m�4 m room with maximum frequency 850 Hz. Therefore, the BEM has much computational
time than AEFBEM as 363 times (i.e. 46,668 times) to analyze same size room. Therefore, it is reasonable to conclude that
the newly developed acoustic energy flow model is a good choice with respect to accuracy and efficiency when analyzing
noise level at medium-to-high frequency ranges.
5. Conclusion

In this paper, an energy flow model for an acoustic problem with low damping was newly derived, and the boundary
element technique was applied to the developed governing equation. By using medium-to-high frequency assumptions
and considering the near field term of acoustic energy density, this acoustic energy flow model was well suited for the
medium-to-high frequency domain. The governing energy equation can be used easily when analyzing an arbitrary form of
acoustic cavities by applying indirect boundary element method to this model. For this reason, AEFBEM can be a powerful
method for predicting acoustic energy distributions.

Several numerical results were provided, and the results of AEFBEM and BEM simulating the acoustic energy field of a
cubic room were compared to verify the validity of AEFBEM. As expected, the developed energy flow solutions agreed well
with the global variation of the conventional boundary element solutions. These results suggest that the method presented
in this research would be very useful for the predictions of noise level at the medium-to-high frequency ranges in the first
stage of design of a mechanical system like automobiles and ships. Especially in the case of large systems, such as ships,
submarines and airplanes, the efficient modeling capability of AEFBEM will be a great advantage, and its efficiency and
accuracy make AEFBEM a promising method for noise analysis in these industries.

In conclusion, this developed acoustic energy flow model considering the near field term is expected to save
computational costs and improve the convenience and accuracy of noise analysis of engineering systems.
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